Hormesis and Longevity

Tall people more likely to get cancer. The same mechanisms that promote growth also promote cancer.

Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity.

Inhibiting respiration appears to activate HIF-1 by elevating the level of reactive oxygen species (ROS). We found that ROS are increased in respiration mutants and that mild increases in ROS can stimulate HIF-1 to activate gene expression and promote longevity. In this way, HIF-1 appears to link respiratory stress in the mitochondria to a nuclear transcriptional response that promotes longevity.

More evidence for **Ristow’s thesis that increasing oxidative stress promotes longevity.**

Longevity. The allostatic load of dietary restriction.

Restriction of essential nutrients as well as calories may affect life expectancy, perhaps in a species specific fashion. **Hormesis, i.e. an evolutionary conserved stress response routine providing protection against a wide variety of (other) hazards in response to low levels of stress, is very likely to contribute to the beneficial health effects of dietary restriction.**

Pesticide promotes longevity in C. elegans

Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

Hormesis extends lifespan.