Vitamin C does not hinder exercise-induced mitochondrial biogenesis

Vitamin C supplementation does not alter high-intensity endurance training-induced mitochondrial biogenesis in rat epitrochlearis muscle

The purpose of this study was to investigate whether vitamin C supplementation prevents high-intensity intermittent endurance training-induced mitochondrial biogenesis in the skeletal muscle. Male Wistar-strain rats were assigned to one of five groups: a control group, training group, small dose vitamin C supplemented training group, middle dose vitamin C supplemented training group, and large dose vitamin C supplemented training group. The rats of the trained groups were subjected to intense intermittent swimming training. The vitamin C supplemented groups were administrated vitamin C for the pretraining and training periods. High-intensity intermittent swimming training without vitamin C supplementation significantly increased peroxisome proliferator-activated receptor-γ coactivator-1α protein content and citrate synthase activity in the epitrochlearis muscle. The vitamin C supplementation did not alter the training-induced increase of these regardless of the dose of vitamin C supplementation. The results demonstrate that vitamin C supplementation does not prevent high-intensity intermittent training-induced mitochondrial biogenesis in the skeletal muscle.

Further evidence against Ristow, who argued that vitamin C prevents adaptation to exercise training by dampening reactive oxygen species. See previous post.

image_pdf

Leave a Comment: